
Towards Autonomous Testing
How can we automate test case design?

Insights from Alexej Popovič and Dr. Maximilian Blochberger

WHITEPAPER

Qt Group Towards Autonomous Testing 2

Overview
Automated execution of tests as part of the continuous integration (CI)
process is a well - established practice for efficiently discovering bugs early
in the development process. However, tests are typically created manually.
Identification and implementation of meaningful test cases significantly
contributes to the total cost of the testing process. To reduce this cost and to
take one step towards a fully autonomous testing process, test case design and
implementation needs to be automated. Like exploratory testing, an autonomous
tester interacts with the application under test (AUT) to discover its structure
and generate optimized test cases. In this paper, we present ideas of how an
autonomous system might operate and discuss challenges for creating such a
system.

With software development gradually embracing agile principles and continuous
integration and delivery methods, test automation has become an integral part of
the product development lifecycle. By reducing human effort and speeding up the
execution cycles, test automation enables shift-left testing, i.e., testing as early as
possible, thereby lowering the cost of fixing defects [1].

However, the term test automation usually refers to test execution, while the
definition and implementation of test cases are tasks carried out manually by
testers. We will discuss how this could be automated as well.

Creating test cases depends on the available information about the inner workings
and the expected behavior of the AUT. While black-box testing solely considers
the system’s input and expected outputs, white-box testing also considers how
the system arrives at the outputs. On the one hand, white-box testing techniques
already allow for autonomous testing in practice. There are tools available to
generate (i) unit tests for a given function based on its source code1, (ii) input data
triggering certain conditions, such as crashes (fuzz testing), or (iii) the identification
of common errors such as type mismatches, missing null-pointer checks, among
others that can usually be identified statically, i.e., without executing the AUT.
For black-box testing, on the other hand, test cases are created manually based
on requirements, specification, or by discovering potential test cases through
exploratory testing. Automatic creation of test cases usually requires additional
information for that purpose, such as models for model-based testing.

To further reduce the cost of the testing process, we are focusing on black-box test
generation of GUI applications.

1 CodiumAI (https://www.codium.ai/)
 EvoSuite (https://www.evosuite.org/)

Parasoft Jtest (https://www.parasoft.com/jtest)
AgitarOne (http://www.agitar.com/solutions/products/agitarone.html)

Qt Group Towards Autonomous Testing 3

Approach

When creating test cases for GUI applications, the specification of the AUT may
be unavailable. In that case, a tester would typically utilize exploratory testing,
which may be described as simultaneous learning, test design, and test execution
[1,2]. Testers use their experience and intuition to systematically explore the AUT’s
features and treat what they learned as a specification, while also assessing the
correctness of the AUT’s behavior.

Our proposal for autonomous test case design and implementation is based on
exploratory and monkey testing. The approach conceptually consists of four phases:

1. Exploration
2. Generalization
3. Optimization
4. Validation

These phases may be iterated until a pre-defined exit criterion is met. In practice,
the four phases are intertwined, as illustrated in Figure 1, so that immediate
feedback can influence which actions are performed.

To interact with the AUT, it needs to be executed. In the exploration phase, the
autonomous tester then subsequently (i) takes a snapshot of the AUT’s state,
(ii) determines the next action, (iii) generates input data for that action, and (iv)
performs the action. The states and actions are logged into a trace, as illustrated in
Figure 2. A trace can later be replayed as a test case.

In the generalization phase, a state machine (model) of the AUT is estimated based
on the collected traces by merging states into abstract states [3], as illustrated in
Figure 3 (see next page).

Figure 1: The four phases of autonomous test case design, implementation and execution.

Figure 2: A trace collected during the exploration of an application.

Action
State

Action Action Action Action
StateStateState

Qt Group Towards Autonomous Testing 4

In the optimization phase, the derived model of the AUT is utilized to identify
potential improvements to individual test cases, e.g., shorter paths to reproduce
identified defects, or to omit irrelevant test cases.

In the validation phase, the correctness of the AUT is assessed. Note that this
is limited to universal malfunctions, such as crashes, to heuristics, or to non-
functional tests, such as usability issues. For functional tests, a specification needs
to be provided as additional input. Further validation is performed on the detected
test cases themselves, e.g., to identify whether they are reproducible or whether a
minimized test case still reveals the originally detected defect.

The described approach already combines test case design and implementation
with test execution. Since the AUT needs to be executed for discovery, there is
no need to do so for validation again. The collected traces even contain sufficient
information to enable offline testing.

Challenges

The approach presented in the last section omits many details for brevity. In this
section, we discuss selected challenges for making the approach fully autonomous
and outline potential solutions.

During exploration, we face challenges of black-box testing, such as unknown
variables influencing an application’s internal state, e.g., the state of the hardware it
is running on, time, or sensor input. Furthermore, only a well-known set of actions
can be considered at a time. Complex actions, such as entering specific texts or
performing touch gestures are challenging to detect automatically. The available
information about the AUT depends on the runtime introspection capabilities of the
used toolkit or the operating system.

During generalization, the main challenge is to find a model that is abstract enough
but still useful for generating test cases. Furthermore, the data considered by the
similarity metric used for merging states into abstract states will largely depend on
the application domain and the specific test goals.

During optimization, complexity presents the biggest challenge. If a crash was
identified, first, the trace needs to be replayed to validate reproducibility, then all
shorter paths leading to the crash based on the derived model need to be executed
to validate whether the result of the optimization is still revealing the crash.

Figure 3: The generalization of a model based on multiple traces.

Qt Group Towards Autonomous Testing 5

During validation, we mainly face the problem that the business logic of the AUT
is unknown. As a person, you can intuitively conclude for a calculator the output
3 for the input 1+1 is a defect. A software system generally cannot assess the
correctness of the output without the expectation being provided as well. AI/ML
methods can be applied to predict the expected outcome, such an approach may
lack traceability information, however. Furthermore, an autonomous tester can only
validate what it can observe, i.e., it cannot detect missing features. Heuristics can be
applied to detect general mistakes, e.g., looking for the term error in window titles
[4], or identifying differences to a previous run as is done for visual GUI testing [5]
and could help detecting features that were removed by accident.

Related work

Autonomous exploration of the AUT is usually known as monkey testing [6–9].
These can perform random actions to crawl the AUT or prioritize actions with a
higher chance of discovering new states [10]. To achieve that, one approach has
been Q-learning [3,10–12]. Some tools use Large Language Models (LLMs) to
generate a formal description of a test case based on the product specification
written in natural language. LLMs can also generate code based on natural language
descriptions. Therefore, generating test scripts using the same specification may
become a reality soon. Valdés et al. provide a comprehensive overview of studies
related to GUI test automation.

Conclusion

Because there is no universal oracle that can decide whether a behavior is correct,
we may never achieve full autonomy in testing. Consider autonomously testing
the driving unit of a vehicle. If the autonomous tester were able to always tell if
the car is driving correctly, always choosing the “correct” way to drive would thus
solve the challenge of autonomous driving. Ad absurdum, generalizing to arbitrary
systems, the autonomous tester would know everything, as it can tell apart correct
and incorrect information. Nevertheless, even if the autonomous tester is limited
to a set of selected use cases, it would still be valuable: finding ways to crash the
AUT, recognizing wrong translations, inconsistencies both in behavior and in the
interface, verifying usability and accessibility, or finding regressions. This allows
testers to focus on validating the business logic. In this work, we only focused on
one part of what needs to be done to achieve full autonomy in testing. The testing
process involves more than executing applications and collecting results. We may
also strive for autonomous test planning and result evaluation, possibly even
including suggestions for fixes.

The findings of this whitepaper were presented at the ESE Kongress 2023.

Qt Group Towards Autonomous Testing 6

References

[1] R. Patton, Software testing, 2nd ed. Indianapolis, IN: Sams Pub, 2006

[2] J. Bach, ‘Exploratory Testing Explained’, Satisfice, Inc., 2003

[3] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro, ‘Automatic testing of GUI-based applications’,
Softw. Test. Verification Reliab., vol. 24, no. 5, 2014

[4] S. Bauersfeld, T. E. J. Vos, N. Condori-Fernández, A. Bagnato, and E. Brosse, ‘Evaluating the TESTAR tool in an industrial
case study’, in ESEM, ACM, 2014

[5] E. Börjesson and R. Feldt, ‘Automated System Testing Using Visual GUI Testing Tools: A Comparative Study in Industry’,
in ICST, IEEE Computer Society, 2012

[6] A. M. Memon, I. Banerjee, and A. Nagarajan,
‘GUI Ripping: Reverse Engineering of Graphical User Interfaces for Testing’, in WCRE, IEEE Computer Society, 2003

[7] D. Amalfitano, A. R. Fasolino, and P. Tramontana, ‘A GUI Crawling-Based Technique for Android Mobile Application
Testing’, in ICST Workshops, IEEE Computer Society, 2011

[8] ‘UI/Application Exerciser Monkey’, Android Developers. Accessed: Oct. 12, 2023. Available: https://developer.android.
com/studio/test/other-testing-tools monkey

[9] N. Nyman, ‘Using monkey test tools’, Software Testing & Quality Engineering, 2000

[10] S. Bauersfeld and T. E. J. Vos, ‘User Interface Level Testing with TESTAR; What about More Sophisticated Action
Specification and Selection?’, in SATToSE, in CEUR Workshop Proceedings, vol. 1354. CEUR-WS.org, 2014

[11] J. Eskonen, J. Kahles, and J. Reijonen, ‘Automating GUI Testing with Image-Based Deep Reinforcement Learning’,
in ACSOS, IEEE, 2020

[12] D. Adamo, M. K. Khan, S. Koppula, and R. C. Bryce, ‘Reinforcement learning for Android GUI testing’,
in A-TEST@ESEC/SIGSOFT FSE, ACM, 2018

[13] O. R. Valdés, T. E. J. Vos, P. Aho, and B. Marín, ‘30 Years of Automated GUI Testing: A Bibliometric Analysis’, in QUATIC,
in Communications in Computer and Information Science, vol. 1439. Springer, 2021

Authors

Alexej Popovič is a software engineer with a passion for knowledge representation and reasoning as well as robotics. He
presently works at Qt Group, where he helps to develop tools for software testing.

Dr. Maximilian Blochberger is a software engineer at Qt Group and a security researcher. He is primarily interested in aiding
developers to create secure and privacy-friendly applications, even if they lack the necessary background.

Contact us for more information.

www.qt.io/squish

©
 Q

t G
ro

up
_2

02
40

92
5

