
Whitepaper

Beyond the Code:
How Designers and Programmers Can Work Together
to Deliver Successful GUIs for Embedded Systems

2 Beyond the Code | The Qt Company © All rights reserved

Beyond the Code:
How Designers and Programmers Can
Work Together to Deliver Successful
GUIs for Embedded Systems

Tuukka Turunen, Director of R&D, The Qt Company, looks
at the requirements for user interface design in embedded
systems, provides suggestions for anyone tasked with
developing advanced GUIs, and explains how building
bridges between designers and programmers is one of the
keys to successful implementation.

From industrial automation to medical devices, and
from home appliances to automotive infotainment,
well-designed and functioning embedded systems
play a critical role to the performance and functionality
of a growing number of modern products. Meanwhile,
in a world where expectations are drastically getting
higher and almost every company is looking for a
flashy and ‘cool-looking’ UI, embedded systems
designers are under pressure to meet ever-growing
usability requirements consistently while delivering
stunning user experience. Although coding is clearly
a critical element to building the interface for an
embedded design, good coding alone is no longer
satisfactory – one needs to understand the user and
choose the right development tools first.

Evolution of User Interfaces for
Embedded Systems

In the past, many embedded systems were just
that: requiring little or no direct link to the end user,
therefore, only basic UI requirements were attained
(if any at all). Also, many users of such systems were
trained professionals of those systems, and it was
acceptable for a system to be non-intuitive or even
impossible to use by others. However, as embedded
devices become more capable and are found at the
heart of almost every electronic system, their features
need to be more accessible. Paradoxically, as increased
features add complexity more work must be done to
abstract this complexity away from the user. Finally,

add-in requirements such as touch-screen navigation,
dynamic content and web access and it is clear that
proper user interface design) is now a critical element
in a creation of an embedded system.
As we have all grown accustomed to the ease use
of mobile phones and tablets, even the most basic
non-consumer design is expected to offer a GUI that
is intuitive, unambiguous, informative, responsive and
reliable. This puts pressure on the project development
team, not only because GUI development can become
more complex at the coding level – suitable ‘building
blocks’ are not readily available for many embedded
operating systems and, while attractive graphics can
be displayed by any system with a good display and
enough processing power, creating interactive and
dynamic GUIs can be very demanding without the right
tools. However, even with the right tools developing
the best GUIs may require additional design skills
that aren’t always readily available in a software
engineering team.

While functionality is, of course, essential, what
distinguishes the best GUI designs from simply
adequate implementations is good usability. Software
engineers will always be able to implement a user
interface that meets the functional specification, but
the best user experience will only come from a higher
level consideration and understanding of how that
interface should help the user do their job better, or
achieve a desired outcome in the simplest or quickest
or most intuitive manner. It’s not only about the looks
of the application but the intuitive interaction with the

3Beyond the Code | The Qt Company © All rights reserved

Once they understand what functionality the user
needs, the designer can move onto the look-and-
feel of the interface and the underlying workflow.
Storyboards and prototype visuals should be created
and discussed with the users and new iterations
created based on their feedback. Modern tools
can assist here, not only enabling fast prototype
development but also allowing this work to be utilised
in the final product rather the developers having
to begin again from scratch, trying to imitate the
designed prototype. Throughout, the designer should
be looking to create an interface that is intuitive,
consistent in form and function and ‘clutter-free’.

Beyond the user requirements and task analysis, other
factors that will impact the design can range from
the operating environment – high levels of ambient
light or, as is the case for many medical or industrial
automation applications, the need to use gloved hands
on a touchscreen may, for example, have an impact
on icon size, colour and position – to the need for
portability across hardware and software platform.
Global deployment may necessitate several language
versions or the need to integrate web functionality
will also need to be considered at this stage. Pure
hardware requirements may also set limitations to the
UI design.

end user. This is why there is a distinction between
coding an interface and designing an interface – and
why, in a world where users will no longer put up with
devices and systems that are hard to learn or difficult
to use there is much work to do before coding can be
started.

Pre-Coding Considerations

The first stage of any good user interface design
should be to define the user requirements and analyse
how the user will perform the necessary tasks. With
this in mind there is no substitute for understanding
what the users need to accomplish and how they
will approach key tasks in order of priority. Naturally
this is true of all designs but becomes especially
important in mission- and safety-critical applications
such as medical or aerospace systems where how
good the interface is can, literally, make the difference
between life and death. With this in mind it can be
valuable observing or recording the users as they go
about similar tasks and it is always worth considering
what problems and frustrations they might have with
existing systems.

4 Beyond the Code | The Qt Company © All rights reserved

functionality is used. And in the case of modern
frameworks, such as Qt, that offer true cross-platform
support this process is simplified even further. Such
portability can minimise the development overhead
of new designs and make it easier to migrate existing
designs while providing a route for embedded
developers to target different silicon price points. For
example, Qt can be used to create an interface for a
portable medical device built around a low-power,
cost-effective processor and the same code can be
leveraged on a significantly larger machine such as
a CAT or MRI scanner that uses a more powerful
processor.

One of the leading object-oriented programming
languages in use today is C++. Based on the
ubiquitous C language, C++ is a natural progression for
many engineers looking to adopt an object-oriented
methodology. By using an object-oriented approach
it is possible to create a development ‘framework’
where modular libraries contain ‘components’ (or
rather ‘classes’) for GUI widgets such as buttons,
sliders, windows or dials, as well as other functional
elements needed in embedded devices, including
networking, support for multimedia (codecs) and
internationalisation (languages). This advantage
over interpreted languages, such as Java, can be
the difference between a great and a mediocre user
experience.

Design Environment and Tools

Once the designer has established the ‘big picture’
requirements for the embedded user interface, it is the
task of the software engineer to make that interface
a reality. The choice of design environment and
associated tools can make a dramatic difference here
– not only to the finished product but also in terms of
the cost and speed of the project development.

For GUI design, the environment is necessarily
divergent; graphical on one hand, source code on the
other. Bringing the two together can successfully
bridge the design and development aspects of GUI
creation that begin with the pre-coding issues outlined
above. A GUI design environment that supports
a graphical approach to design (aesthetics) and
development (coding) is particularly advantageous
in this respect. In such an environment user controls
represented graphically will ideally also contain,
inherently, all of the code needed to invoke them on
the target platform. In engineering terms, this implies
an object-oriented approach to design; by selecting an
element, all of its features are inherently invoked and,
through this ‘inherency’, anything built using these
elements will implicitly have access to the individual
elements’ features and functionality. Superficially
such an approach is not restricted to visual elements;
any ‘component’ developed using an object-oriented
methodology implicitly inherits the features of its
component parts and passes on its features to any
other components using it in a hierarchical fashion.

This underpins the structure of object-oriented
programming languages such as C++, and is
conceptually extended to graphical design
environments that support object-oriented
programming. Significantly, object-oriented software
is inherently portable because ‘components’ embody
(through inheritance) all of the features needed to
define their functionality, making object-oriented
code less hardware dependent. In most cases,
porting object-oriented software is a simple case of
re-compiling for a different architecture – at least
as long as no hardware or operating system specific

5Beyond the Code | The Qt Company © All rights reserved

Framework Functionality

Of particular benefit to both designer and engineer
is if the environment chosen offers a wide variety
of pre-fabricated and customisable user interface
components along with classes and modules that
abstract common functionality in operating systems,
ideally, beyond just GUI creation. For example, by
also providing classes for XML, networking, inter-
process communication (IPC), 2D and 3D graphics
with hardware acceleration, threading, data bases,
internationalization and multimedia the engineer
effectively has access to a whole application
framework. This advances implementation of key
functionality while allowing developers to focus on
core competencies that add competitive advantage to
the final product.

Take, for example, the Qt application and UI
framework, which is well-established in the desktop
environments and has also been well adapted
to embedded and mobile systems. Consisting of
both development tools and class libraries, the Qt
framework allows designers and programmers
to work together to produce a GUI using pre-built
components that are easily customised to match the
desired look-and-feel and behaviour of the application.

Because of object-oriented design, the components
can also be extended effortlessly to create new UI
components.

The Qt design environment enables the rapid
creation of graphical elements, for example, drag-
and-drop UI creation in addition to writing the code.
High performance text rendering as well as pre-
rendered fonts help to reduce processing overhead
while, beyond the graphics, special web tools meet
connectivity requirements by allowing designers
to build advanced user interfaces that incorporate
real-time web content and services. For global
deployments a dedicated linguist tool enables
engineers to translate and adjust applications to
different world languages, including support for Asian
characters and right-to-left script.

Portability

One of the significant advantages of Qt is the way
in which the framework has been built to provide a
top-level, cross-platform application programming
interface (API), which enables deployment of GUI
designs and applications across multiple software
environments with minimal additional work. For

6 Beyond the Code | The Qt Company © All rights reserved

in everyday objects. For most developers though, the
Internet of Things is just a newer, more fashionable
term for the old industry workhorse: the connected
embedded system. After all, haven’t we been building
IoT-like devices for decades? Yes and no.

Central to most definitions of IoT devices is the fact
that they are embedded systems that are often (but
not always) mobile and use M2M – in other words,
wandering gadgets communicating machine-to-
machine. Of course, these attributes already apply to
a large number of embedded devices. However, the
IoT promise is that always-on communication will
give these devices the information they need to act
smarter. This step of imbuing every-day objects with
rudimentary intelligence and communication skills
gives us a wide array of technological aides: sensor-
studded biometric clothing, self-scheduling shipping
drones, auto-monitoring homes, freshness-reporting
groceries, automatic parking meters, self-diagnosing
agricultural crops — the list goes on.

instance, source code from one device target, such
as a desktop PC environment, can be deployed to
an embedded operating system or a mobile device
without any requirement for re-writing. This not
only allows multiple deployments from a single
development project but also future-proofs the code
against next-generation challenges in the platform
itself—a significant benefit in a world where operating
systems themselves are subject to continual revisions
and where product lifetimes can sometimes be
measured in months rather than years.

Building the Internet of Things and
How Qt Can Help

The term, Internet of Things (or IoT), is everywhere.
For people wanting to impress others, it’s the latest
buzzword to include in a conversation in order to be
seen as relevant. For science fiction romantics, it’s an
image of dust-sized computers implanted everywhere

7Beyond the Code | The Qt Company © All rights reserved

Realizing this vision of IoT requires computers to
continue becoming smaller, smarter, and more
connected. While everyone seems to understand this
requires a hardware transformation, few people are
talking about the significant change that’s required
in software. Adding intelligence to everyday objects
while ensuring both human-to-machine (H2M) and
M2M conversations are more intuitive and natural
requires complex software, and lots of it. This in turn,
places a number of requirements on how to develop
IoT software.

About Qt

Used by over 1,000,000 developers worldwide, Qt is a full framework that enables the development of powerful,
interactive and platform-independent applications. Qt applications run native on desktop, embedded and mobile
host systems, enabling them to deliver performance that is far superior to other cross-platform application
development frameworks. Qt’s support for multiple platforms and operating systems allows developers to save
significant time related to porting to other devices.
Qt is created by developers for developers where making developers’ lives easier is top priority. It provides an
incomparable developer experience with the tools necessary to create amazing user experiences. Qt is platform
agnostic and believes in making sure that all developers are able to target multiple platforms with one framework
by simply reusing code. Qt gives freedom to the developer. Code less. Create more. Deploy everywhere.

About The Qt Company

The Qt Company is responsible for all Qt activities including product development, commercial and open source
licensing together with the Qt Project under the open governance model. Together with our licensing, support and
services capabilities, we operate with the mission to work closely with developers to ensure that their Qt projects
are deployed on time, within budget and with a competitive advantage.
The Qt Company’s goal is to provide desktop, embedded, and mobile developers and companies with the
most powerful cross- platform UI and application framework. Together with its licensing, support and services
capabilities, The Qt Company operates with the mission to work closely with developers to ensure that the projects
are deployed on time, within budget and with a competitive advantage.

www.qt.io
Office locations: China | Finland | Germany | Norway | Russia
	 South Korea | Taiwan | United States

