
Crafting Robust Foundations
with Software Architecture
A guide to success
New to Architecture Verification? This guide will explain what
software architecture is and why it is important.

WHITEPAPER

The Qt Group Crafting robust foundations with software architecture: A guide to success 2

A guide to success

The software architecture is the foundation of a
software system and helps understand how the
code is structured.

“What is software architecture?” is a question that
might have different answers depending on your
knowledge, experiences, and use cases. While
definitions may differ, certain fundamental concepts
are crucial in software architecture.

The term “architecture” in software development was initially borrowed from the
construction industry due to the similarities between the two fields. The waterfall
methodology was widely used in software development in the past, and detailed
plans were required before writing any code. This approach was similar to the
planning required in construction, where the architectural design must be finalized
before construction begins. But things have changed.

Modern software development methodologies are designed to be flexible and
easy to change over time, so there’s less need for strict planning at the beginning.
However, the first decisions made regarding how the software is built, can take time
and effort to change at a later stage.

If you were to ask what software architecture includes, the answer would differ
based on their development lens. This whitepater concentrates on the structural
aspects of the software and the role of architecture in it.

What is Software Architecture?
Software architecture refers to the overall design and structure of a software
system, which includes how its various components interact to achieve the desired
functionality — it is the foundation of a software system.

As defined by the ISO/IEC/IEEE 42010 standard, software architecture refers to the
core concepts and characteristics of a system within its surroundings, expressed
through its components, connections, and the guiding principles of its creation and
development.

The standard definition essentially highlights the following points:

•	 When you use software, you might not think about how it’s built. But, just
like a building needs a blueprint, software needs a plan too. That plan is
called software architecture.

•	 The software architecture is like a map showing how the software works
and fits into the world around it. It’s important to make sure the software
works well in the environment in which it is used because it minimizes
potential disruptions and maximizes the software’s longevity and
effectiveness in serving its purpose.

•	 To help everyone understand the software architecture, a description is
created that explains how it works and solves the problems it was created
for. This description is like a guidebook that helps people see how the
software will meet their needs.

•	 Different people care about different things when it comes to software.
To ensure everyone can understand the software architecture, different
scenarios are created that show how it works from different angles. These
scenarios help people see how the software will work for them.

The Qt Group Crafting robust foundations with software architecture: A guide to success 3

Software projects can vary in the level of attention given to design, time spent,
focus, and documentation dedicated to different parts of software architecture.
However, software architecture primarily comprises vital design decisions that
significantly influence the system.

This foundation is a crucial facet of software development, as it directly affects the
quality of software developed on top of it. In other words, it has an impact on the
system’s

•	 Performance
•	 Scalability
•	 Maintainability

Simply put, how software is created today must be flexible enough to handle
future changes. This means that the software should be designed to make it easy
to evolve and adapt to these changes rather than completely rebuilding it from
scratch.

Why is Software Architecture so
Important?
Before developing software, it’s important to have a plan in place. Just like building
a house, the foundation of a software system plays a significant role in its quality
— the architectural decisions dictate how the software will function. Having good
architectures in place helps increase the chances of success for the software
system. It ensures that it can function properly and be easily maintained.

End of innovation potential
with bad maintainability

End of innovation potential
with good maintainability

t

Boundry of comprehension
and maintainability

Functionality

Complexity

“Complicacy”

End of lifetime (product)

The increase of functionality automatically
leads to an exponential increase of complexity
of a software code. It becomes more and more
difficult to understand and maintain.

The Qt Group Crafting robust foundations with software architecture: A guide to success 4

Even small software systems have an architecture, and it’s important to have a
good one in place to ensure the system works well and can be easily maintained to
make it flexible enough to meet the fast-paced changes in todays world. A well-
designed architecture becomes even more crucial with larger and more complex
systems.

So, while it’s tempting to start coding right away, planning and designing the
software architecture is an essential step in the development process. The benefits
of a software system’s architecture with a solid foundation are numerous. Let’s
explore these advantages in more detail.

Managing the presence or absence of quality attributes.

The design of a software system is critical in ensuring that it works well and meets
the needs of its users. There are certain properties of a software system that can be
measured and tested, such as:

•	 how easy it is to maintain
•	 how well it works with other systems
•	 how secure it is
•	 how quickly it performs tasks

These properties are called quality attributes, and they’re critical because they
affect how happy users are with the system.
Sometimes, different quality attributes conflict with each other, so it’s important to
make sure the architecture balances them properly. When the architecture is done
well, the system meets all the important quality requirements that its users need.

Software architecture helps manage
the quality of your software.

The Qt Group Crafting robust foundations with software architecture: A guide to success 5

Making it easier for everyone involved to talk to each other

The good news is that software architecture is designed to be easy to understand
for everyone involved, even if they don’t know a lot about technology. Different
stakeholders might care about different things when it comes to software
architecture. The relationship between software architects and developers is like
that between birds flying over a pond and frogs in that pond—the frogs can see
the details of their immediate surrounding, but don’t really know much about what
happens around them. The birds on the other hand see the big picture, but can’t see
any details.

When software is designed, different groups of people have different priorities, e.g.:

•	 The developers focus on implementing their current tasks or features as
quickly as possible.

•	 The project managers might be more concerned about making sure it is
available on time and within budget.

•	 The security team worries about making sure the software is secure so
that nobody can hack into it to steal important information.

It is the software architect who cares about making sure it’s easy to add new
features or fix problems while making sure everyone’s priorities are taken into
account. For that, a common language and a shared design approach become even
more vital. By doing so, stakeholders can talk about their priorities in a way that
makes sense to everyone else and the software can be designed to meet everyone’s
needs, while at the same time remain adaptable and maintainable.

This is especially useful for big and complicated software systems that need to be
easier to understand. When stakeholders are figuring out what they want from the
system and making important decisions, having a formal software architecture can
help everyone negotiate and talk about what is needed.

Different perspectives. One goal. Software
Architecture makes it easier for people to
make decisions which include all needs.

The Qt Group Crafting robust foundations with software architecture: A guide to success 6

Exploring methods to improve the accuracy of predicting the duration and cost of
a project.

Project managers need to know how long a software project will take and how
much it will cost to plan resources and monitor progress properly. One of the
important duties of a software architect is to help project management by providing
this information and breaking down the necessary tasks and estimates for
those tasks. How the software is designed affects what tasks will be needed for
implementation, so the software architect can help project management create the
tasks.

Good collaboration between the project manager, software architect, and
developers is beneficial for creating accurate estimates. The most precise
estimations are attained through team discussions until a mutual agreement is
reached. Sometimes, during these discussions, someone on the team provides an
insight that no one else has considered, allowing everyone to rethink their position
and possibly revise their estimates.

A well-designed software architecture that accurately reflects the project’s
requirements can help avoid costly rework that would be necessary if crucial
requirements were missed. Moreover, a well-thought-out architecture reduces
complexity, making it easy to understand and reason, resulting in more accurate
cost and effort estimates.

Onboarding new team members to your development team

A team that works on developing software often needs to bring in new people as
they grow. This can be a challenge, as it takes time for new people to learn how
everything works. Apart from that, different people might need to work on the
software to fix problems or improve it over time—this is where your software
architecture becomes even more important.

Essentially, the architecture and implementation must match to make onboarding
easy. The more they deviate, the harder the onboarding gets. Imagine having to
explain a fluid plan that changes every time you have a new person on the team. It’s
far from ideal. However, if the team has a good plan for building the software and is
committed to the original plan, it is easier for new people to learn everything about
the software they need to know.

Software architecture gives valuable insights
and allows for precise planing.

Software architecture helps teams grow.

The Qt Group Crafting robust foundations with software architecture: A guide to success 7

Importance of Conformance Checks
in Overcoming Software Architecture
Challenges
Architecture conformance checking is a process that ensures the way a software
system is built matches how it was supposed to be built. Challenges arise as soon
as architecture and implementation deviate. The stronger the deviation, the harder
the challenge becomes. In this context, conformance checks make it plain for all to
see a deviation has happened. Automated architecture conformance checking is not
very common, and only a few tools are available to monitor the health of software
systems.

Architecture monitoring is a process that helps to make sure that software systems
are functioning as they should be. However, many organizations do not use specific
automated tools for architecture monitoring, which can lead to problems later in the
software life cycle. This is especially true when building new software on top of old,
outdated systems.

Sometimes, how software is built can be different from how it was originally
planned. This is called software architecture erosion. It can happen when software
developers make decisions that don’t follow the original plan or established rules.

Understanding software architecture erosion

Software architecture erosion (also known as architecture debt) is when software
doesn’t turn out the way it was supposed to be designed. When software is created,
sometimes shortcuts, temporary fixes, and other compromises are made that can
cause problems later on. This can happen when the people building the program
don’t follow the rules or make decisions that go against what the program was
supposed to do. It’s worth noting that this doesn’t always mean that the developers
did a bad job. It might just be that they didn’t know about a certain problem or issue.

Software architecture needs to be verified
regularly to ensure it can fulfill its important role.

The Qt Group Crafting robust foundations with software architecture: A guide to success 8

Realistically speaking, you would have:
•	 an architecture
•	 a design
•	 perhaps a detailed design
•	 an implementation (sometimes with even multiple layers as models etc.)

The challenge of mixing things can happen at each level and has a different impact
when that happens. As a result, it introduces technical debts to the entire process.
The art of architecture is that the most important decisions at the architecture
level make it impossible for the lower levels (design etc.) to mix parts together that
should not interact when not deviating from the architecture.

The impact of technical debts

Technical debt can harm the long-term success of software systems by introducing
undesirable changes to important parts of the software. This can happen when
stakeholders have to make quick decisions to get something done fast or when
they don’t have enough knowledge or resources to create high-quality software. For
example, someone might prioritize getting a critical function working quickly over
making sure the software is designed well.

Technical debt can also happen when design decisions focus on short-term goals
rather than long-term quality. These types of technical debt can cause problems
with maintaining and improving the software over time.

That’s why it’s important for stakeholders to verify their software architecture
before making changes to ensure everything is done according to the plan. By doing
this, they can save time and money and prevent problems from happening later on.

Conclusion
An effective architecture serves as a unifying force that connects all parties
involved, streamlines operations, saves time and money, and enables early
detection of potential design flaws.

The architecture is a foundation that binds together different system
components, providing a clear development, testing, and deployment roadmap.
It creates a shared understanding of the system’s structure, functionality, and
behavior, enabling cross-functional teams to work together more efficiently and
effectively.

With a well-designed architecture, stakeholders can make informed decisions,
adapt to changing requirements, and deliver high-quality solutions that meet
user needs and expectations.

©
 T

he
 Q

t G
ro

up
 | 2

02
40

6

www.qt.io/axivion

